
Segment Generation Approach for Firewall Policy
Anomaly Resolution

Dr.S.Madhavi, G.Raghu

Department of CSE,

PVP Siddhartha Institute of Technology,
Vijayawada, Krishna Dist, Andhra Pradesh.

Abstract— Firewall Policy Anomalies are situations where pre-
defined and applied policy settings fail to impose during packet
filtrations due to heavy loads experienced by the firewall. Prior
approaches to handle these anomalies suffered from rule
mismanagement and inaccurate results issues. So, we have used
the earlier development of anomaly management framework for
firewalls based on a rule-based segmentation technique that
facilitates not just accurate anomaly detection but also effective
anomaly resolution. A grid based visualization technique is
introduced to represent policy anomaly diagnosis information in
an intuitive and effective way. As a performance optimization
parameter we would like to extend the anomaly management
framework with access control policies(ACP). This kind of ACP
based approach to the proposed framework turns a security
implementation device such as a firewall into a bastion host like
machine leading to better management of the host and a
practical implementation validates our claim.
Keywords—WirelessNetworks, Packet Classification, Denial-of-
Service, Selective Blocking, Access Control Policies.

I. INTRODUCTION
Firewall Policy Management(FPM) is one of intensive and
expensive aspects of managing almost any network
infrastructure and requires a high level of expertise by
network administrators to get right customized configurations
for each organization unique needs. A single glitch in such
an FPM and network applications lose communications,
transactions are not saved, processed, and application
consoles quickly goes out of control. A firewall holds
thousands of rules, more complex environments where
security is an issue and customization are regular these
firewalls may hold rules ten times that many. These firewall
management complexities are true across all major systems
regardless of major firewall vendors such as Cisco, Juniper,
CheckPoint, Fortinet, IBM/ISS Linux, or Nortel. On average
it takes about three hours of testing and analysis to implement
a single rule change which signifies the magnitude of the
management burden. One rule may get involved in multiple
policy anomalies. In these situations, this anomaly resolution
in isolation may trigger handling delays or the reason behind
other anomalies. It is very difficult to deal with all these
conflicting rules by only reordering these conflicting rules.
Hence, it is necessary to detect the dependency relationships
among packet space segments for efficiently resolving policy
anomalies.

Each conflicting segment indicates a policy conflict as well
as a set of conflicting rules involved in the conflict. Once
conflicts are identified the system administrator resolves
them manually by changing the conflicting rules which is a
tedious task and even impractical due to the complicated
nature of policy conflicts. An effective method to resolve a
policy conflict is to determine which rule should take
precedence when a network packet is matched by a set of
rules involved in the conflict automatically without human
involvement.
An automated firewall anomaly management framework[5]
for firewalls are based on a rule-based packet segmentation
technique which is used to facilitate an effective anomaly
detection and resolution. Using this technique, a network
packet space defined by a firewall policy can be divided into
a set of disjoint packet space segments. Each packet segment
associates with any of the unique set of firewall rules defined
for various protocols accurately indicates the threat packets
(either conflicting or redundant) using those rules. It involves
a conflict resolution method with the help of several effective
resolution strategies for various network protocols with
respect to the risk assessment of protected networks and the
intention of policy definition. The technique introduces that
an action constraint is assigned to each of these fracas
segment. An action condition for each conflicting segment
defines a desired action (either Allow or Deny) that the
firewall policy should take when any packet within the
conflicting segment comes to the firewall. To resolve a
conflict, the action constraint has to be satisfied by the action
taken for each packet within the conflicting segment.

II. RELATED WORK
 A firewall policy consists of a sequence of rules that define
the actions performed on packets that satisfy certain
conditions. The rules are specified in the form of (condition,
action). A condition in a rule is composed of a set of fields
for identifying the matching packets. Table 1[5] gives an
example of a firewall policy, which includes firewall rules
ranging from r1 to r5. Note that the symbol “*” utilized in
firewall rules denotes a domain range. For instance, a single
“*” appearing in the IP address field represents an IP address
range from 0.0.0.0 to 255.255.255.255. For demonstrational
feasibility consider the following Firewall Policy results
table.

S.Madhavi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 6-11

www.ijcsit.com 6

TABLE 1
An Example Firewall Policy

Several related work has categorized different types of
firewall policy anomalies [1], [2], [5]. On the basis of
following classifications, typically encountered firewall
policy anomalies are:
1. Shadowing. A rule can be shadowed by one or a set of

preceding rules that match all the packets which also
match the rule which is shadowed, while they entirely
initiate a different action. In this situation, all the packets
that unique rule intends to deny (accept) can be accepted
(denied) by the previous one; therefore the shadowed
rule will never be effective enough. In Table 1, rule r4 is
shadowed by rule r3 because r3 allows every TCP packet
coming from any one port of the nodes at 10.1.1.* to the
port 25 of the nodes at 192.168.1.*, and the rule r4
denies all the packets if it comes before rule r3.

2. Generalization. A rule is a generalization of one or a set
of previous rules if a subset of the packets matched by
this rule is also matched by the preceding rule(s) but
taking a different action. For example, in Table 1 rule r5
is a generalization of rule r4.The two rules highlight that
all the packets coming from 10.1.1.* are allowed, but the
TCP packets coming from 10.1.1.* to the port 25 of
192.168.1.* are denied.Generalization might not be an
erroneous condition.

3. Correlation. One rule is correlated with many other rules,
if a rule converges with others but defines a different
action entirely. In this situation, the packets are matched
by the intersection of those rules may be accepted by one
rule, but denied by other rules. In Table 1,rule r2
correlates rule r5, and all UDP packets arriving from any
port of node at 10.1.1.* to the port 53 of node at
172.32.1.* match these rules at the intersection. Since
rule rule r5 comes after rule r2,the rule r2 denies every
packet within the intersection of these rules. Unless, their
positions are swapped, the same packets will be
accepted.

4. Redundancy. A rule is redundant if there is another same
or more general rule available that has the same effect.
For example, in Table 1 rule r1 is redundant with respect
to rule r2 specified, since all UDP packets coming from
any nodes of port at 10.1.2.* to the port 53 of node at
172.32.1.* matched with r1 can also match r2 as well
resulting with the same action twice.

 Anomaly detection algorithms and corresponding tools
were introduced previously in [1], [2] as well. However,
existing conflict classification and detection approaches only
treat a policy conflict as an inconsistent relation between one
rule and other rules leading to redundant inconsistent results

and high processing time which are addressed through our
approaches.
 Compared to prior approaches specified in [1][2][3] and
their prototypes like Firewall Policy Advisor [1] and
FIREMAN [2], a more effective redundancy elimination
mechanism used in this framework, and through the
experimental results, redundancy discovery mechanism
achieved approximately 70 percent improvement compared to
prior approaches of [1], [2]. Also the outcomes of prior policy
analysis tools [2], [1] are list of possible anomalies, which
shows a view to the system administrators regarding the
origination of policy anomalies. Using the information
visualization technique [4] and our rule-based packet
segmentation technique they developed a visualization-based
firewall anomaly management environment (FAME). A
simulation with respect to the real-life firewall policies
highlights the efficiency of our system with respect to
automated network anomaly conflict resolutions.

III. PROPOSED SCHEME
 Prior anomaly detection methods could not accurately point
out the anomaly portions caused by a set of overlapping rules
causing redundancy and high processing times making them
inadequate for high end dynamic network environments. In
order to precisely identify policy anomalies and enable a
more effective anomaly resolution, an earlier technique which
is based on rule-based segmentation, which adopts a binary
decision diagram (BDD)-based data structure to represent
rules and perform different operations such as set operations
and transforms a list of rules into a set of disjoint network
packet spaces to resolve overlapping conflicts arising due to
similarity of various network protocols and their payloads.
The Segment Generation algorithm[5] of network packet
which is at the core of this framework is specified here in the
form of a conflict reordering flowchart.

 Fig. 1. Strategy-based conflict resolution.

S.Madhavi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 6-11

www.ijcsit.com 7

Algorithm 1[5], shows the pseudo code of generating packet
space segments for a set of firewall rules R. This algorithm
works by adding a network packet space s derived from a rule
r to a packet space set S. A pair of network packet spaces
should satisfy one of the following relations: subset (line 5),
superset (line 10), partial match (line 13), or disjoint (line
17). Therefore [5], one can utilize set operations to separate
the overlapped spaces into disjoint spaces to classify whether
the packet can be allowed or not. The strategy based conflict
resolution[5], which is adapted in FAME is represented by
the event flows.

Access control policy signifies a framework that represents
authorizations, actions, and their effect in a networked
system. Access control systems can be changed by a policy,
which is having a set of objects and the corresponding
substitutions. We define ∑ as a finite set of those objects such
that each object in that ∑ has a type. ∑t ⊆ ∑ is the set of
objects of that type t. If V is the set of variables that are acted
upon an action event, then a substitution σ is a function V 
∑ that respects types. The set of atomic propositions P is
defined as the set of predicates instantiated with the objects in
∑ thus

P = {w(v) σ | w Є Pred, v Є V* and σ is a substitution}

The system state is an evaluation of atomic propositions
defined in in P. A state s can be defined as a function of P
influencing the outcome of events. We use s[p  m] to
denote the state that is like s except that it maps the event
proposition p to value m.

A variety of access control policies are implemented :

 For start and stop updating the packets in the table we
will use “Start”, “Stop” options.

a. Lookup(ipAddress, hostname)
//Finds the name of the ipAddress that is present in the table

1. if(length of ipAddress >0)
2. get the host name; //gets the name of ipaddress
3. retrieves by finding the suspicious host;

b. Find Local Process(port, processid)
// finds which process id uses which port to receive / send packets

1. if(length of the port>0){

2. args[]={“netstat -aon| find \"" + port + "\""”}
3. if(file does not exist)
4. Create a new file;
5. }

c. Service Control(action, service name)
 //to view /start /stop any service

1. if(opt==1 ׀׀ opt==0)
2. action=(opt==1? “start” : “stop”); // 1/0 - start/stop the

service
3. else
4. print statement;
5. if(length of service name>0){
6. Request to create a new file;
7. if(file does not exists)
8. create new file;
9. }

d. Block access(hostname, host)
 Host file is the file to be blocked

1. if(host file does not exists)
2. create a new host file;
3. if(hostname==null)
4. return;
5. temphosts=gets path of the temphost;
6. if(temphosts exists()){
7. temphosts.delete();
8. create a new temphost file;
9. }
10. if(file &&hosts exists){
11. read the host file;
12. boolean done=false;
13. while(line!=null){
14. if(line.contains(”localhost”)&&!line.startsWith(“#”)&

&!done){
15. done=true;
16. add the hostname to hosts;
17. }
18. else
19. write the line in output;
20. }
21. enter the hostname to hosts;
22. }
23. else
24. print there is an error;

e. Allow access(hostname, temphost, host)
//the website has been given access, which is blocked

1. get the file of blocked host
2. if(file exists){
3. read the file ;
4. boolean done=false;
5. while(!line=null){
6. append this line to web access details;
7. }
8. }
9. if(hostname==null)
10. return;
11. if(host file exists){
12. boolean done=false;
13. while(line!=null){
14. if(line equals hostname)
15. output in new line;
16. else
17. write in a new line;
18. }

S.Madhavi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 6-11

www.ijcsit.com 8

19. delete the host file;
20. rename hostfile to thostfile;
21. delete thostfile;
22. }
23. host=get path of hosts;
24. temphost=get path of temphost;
25. if(temphosts exists){
26. delete the temphost;
27. append newfile to temphost;
28. }
29. if(file and host exists){
30. boolean done=false;
31. while(line!=null){
32. if(line contains only local hostname)
33. done=true;
34. output in new line;
35. else
36. write in the new line;
37. }
38. delete the host;
39. rename temphost to host;
40. }
41. else
42. print there is an error in the output;
43. }

 The following are the screens for blocking a website
and giving access to the blocked website.
a. Initially, we take “www.w3schools.com” site and we

will block the site.

b. Now, we will block the site by using ACP- Block Access

option.

c. From the below screen, we can see that the website is
blocked.

d. Now, we unblock the site by using ACP-Allow Access.

e. Now, we can see from the following screen that the

website blocked is given access.

The class diagram describes the attributes and operations
performed on the attributes. The system interacts with
login_panel and it consists of anomaly detector, user_details,
traffic status. Inturn they interacts with alerts.

S.Madhavi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 6-11

www.ijcsit.com 9

Fig 2: class diagram

The sequence diagram is used to show the interactions
between objects in the sequential order.The sequence of
actions performed are identification, implementation,
classification and also has visualization tool.

Fig 3: Sequence diagram

Activity diagram represents business process and also
graphical representation for executed set of system activities.

Fig 4: Activity diagram

IV. PERFORMANCE

 Firewall Policy rules provides network traffic access
control because they define which packets are permitted and
which are denied. A firewall access policy(FPA) consists of a
set of rules. Each packet is analyzed and its elements
compared against elements in the rules of the policy in a
sequential order. The rule that matches first, the packet will
have its configured action initiated, and any processing
specified in the rule's configured options will be
implemented. The conflict resolution method that
understands several risk assessment strategies deployed in
protected networks and the intention of policy definitions is
at the core of our framework. Besides monitoring and
resolving anomalies using this optimization parameter the
system administrators can control the service, user operations
and manage processes. The visual statistics of the operations
are represented here.

Fig. 5. FAME Network Statistics.
These results signify the packets denied capability of FAME
framework that effectively identifies and blocks almost
immediately redundant and in cohesive protocol-packet pairs
thus justifying 70% duplicate elimination claim. Furthermore
implementation of user access control policies of a network
host specified earlier in Firewall rule priority(point 5)
transforms a normal host to a bastion host like environments

S.Madhavi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 6-11

www.ijcsit.com 10

which can be used in high end systems like servers. This
transformation yields benefits like batch user manipulations,
custom remote host blockages of outbound traffic etc. Also
the grid based visual representation further aids network
administrators by providing information in an intuitive way,
enabling an efficient automated firewall policy anomaly
management.
As a performance optimization, we are integrating the access
control policies(ACP) to the existing firewall. By observing
the following screens we can see the difference between the
existing one to the enhancement to it.

From the following screen, we can see the ACP are integrated
in the left side of the screen.By comparing these two
outputs,our enhancement can give the administrator a better
control over the user actions and also controls the service
operations.

V. CONCLUSION
In this paper, an automated firewall policy anomaly
management environment(FAME) framework is used, that
can perform systematic detection and resolution of firewall
policy anomalies arised and experienced during high network
traffic scenarios. FAME's Rule-based segmentation
mechanism and a visual grid-based representation technique
achieves the goal of effective and efficient anomaly analysis
and the results validates our claim. We implemented user
access control policies of a network host which transforms a
normal host to a bastion host like environments which can be
used in high end systems such as servers. FAME results
suggest that it is a practical and helpful system for system
administrators to ensure a secured network environment.
Although it can also be integrated into Intrusion Detection
Systems, Centralized rule management schemes[6] can be
regarded as a future research that has the potential to aid high
end systems like Servers.

REFERENCES
[1]“Discovery of Policy Anomalies in Distributed Firewalls,” IEEE

INFOCOM, E. Al-Shaer and H. Hamed,’04, vol. 4, pp. 2605-
2616, 2004.

[2] “Fireman: A Toolkit for Firewall Modeling and Analysis,” L.
Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, P. Mohapatra, and C.
Davis, Proc. IEEE Symp. Security and Privacy, p. 15,2006.

[3] E. Lupu and M. Sloman, “Conflicts in Policy-Based Distributed
Systems Management,” IEEE Transactions. Software Eng., vol.
25, no. 6, pp. 852-869, Nov./Dec. 1999.

[4]“Graph Visualization and Navigation in Information
Visualization: A Survey,” I. Herman, G. Melanc¸on, and M.
Marshall , IEEE Trans. Visualization and Computer Graphics,
vol. 6, no. 1, pp. 24-43, Jan.-Mar. 2000.

[5] Hongxin Hu, Gail-Joon Ahn, and Ketan Kulkarni, “Detecting
and Resolving Firewall Policy Anomalies” IEEE
TRANSACTIONS ON DEPENDABLE AND SECURE
COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2012

[6]CentralizedRuleManagement,
http://www.scmagazine.com/strategic-firewall-policy-
management/article/119407/#

S.Madhavi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 6-11

www.ijcsit.com 11

